HPE 850 Unified Wired-WLAN Appliance Series

Key features

• Scalable capacity, performance, and high reliability for medium Enterprise wireless networks
• System-wide approach to WLAN reliability through Wi-Fi Clear Connect
• Flexible forwarding modes
• Comprehensive feature set for demanding Enterprise environments

Product overview

The HPE 850 Unified Wired-WLAN Appliance delivers a highly scalable solution (up to 512 APs through optional licensing and 10G centralized throughput) with high reliability for medium Enterprise wireless networks and supports IEEE 802.11a/b/g/n and IEEE 802.11ac APs and access devices.

The 850 Unified Wired-WLAN Appliance provides eight 1000 Mb/s Ethernet ports and two 10GbE ports and can optionally support up to 512 managed APs, 10,000 users, and 10G of centralized throughput.

The HPE 850 Unified Wired-WLAN Appliance provides refined user control and management, improved power savings with IEEE 802.3 az, comprehensive RF management and security mechanisms, fast roaming, QoS and IPv4/IPv6 features, and powerful WLAN access control.
Features and benefits

Management

• Wi-Fi Clear Connect

Provides a system-wide approach to help ensure WLAN reliability by proactively determining and adjusting to changing RF conditions and by identifying rogue activity and enforcing prevention policies, and optimizing WLAN performance by detecting interference from Wi-Fi and non-Wi-Fi sources using Spectrum Analysis capabilities built into specific HPE access points (refer to the HPE Access Point—Controller Compatibility Matrix).

• Advanced radio resource management

 – Automatic radio power adjustments

 Include real-time power adjustments based on changing environmental conditions and signal coverage adjustments

 – Automatic radio channel

 Provides intelligent channel switching and real-time interference detection

 – Intelligent client load balancing

 Balances the number of clients across multiple APs to optimize AP and client throughput

 – Airtime fairness

 Helps ensure equal RF transmission time for wireless clients

• Spectrum analysis

 – Signal detection/classification

 Identifies source of RF interference, for example, Bluetooth®, cordless phones, and microwave ovens

 – Evaluation of channel quality

 Helps detect severe channel degradation and improves the reporting of poor RF performance

• Band navigation

 Enables automatic redirection of 5 GHz-capable clients to the less-congested 5 GHz spectrum

• Enterprise network management

 Is provided by HPE Intelligent Management Center (IMC) Platform software and the IMC Wireless Services Manager Software Module, which effectively integrate traditionally disparate management tools into one easy-to-use interface

• Secure controller management

 Manages the controller securely from a single location with IMC or any other SNMP management station; controller supports SNMPv3 as well as SSHv2 and SSL for secure CLI and Web management; console port is available as a pass-through to the switch console function
• Support for environments using Bonjour services
 – Gateway
 Allows discovery of Bonjour services located in a different layer-3 network
 – Hewlett Packard Enterprise Zerocast
 Eliminates Bonjour multicast traffic from the WLAN enabling scalable deployment of Apple devices with no performance impact on the Wi-Fi network
 – Access control
 Enables filters to be applied inbound and outbound (on the AP) to SSIDs, groups of or specific APs. User based filtering can block Bonjour traffic until the user is authenticated

• VLAN pooling
 – Enables wireless clients to be dynamically assigned to different VLANs so administrators can assign different subnets to different clients in the same SSID. A VLAN pool can bind to multiple SSIDs

• Unified network visibility
 – Provides visibility between a wired and wireless network using IEEE 8021AB Link Layer Discovery Protocol (LLDP) and sFlow®

• AP Plug and Play (PnP)
 – Provides zero-configuration capability. An AP without a predefined configuration file can connect to the WLAN controller and the WLAN Controller will provision it with the correct wireless configuration

• Policy-based forwarding
 – Simplifies the deployment of centralized or local forwarding. The policy-based mode allows user to classify data traffic based on ACL and choose local or centralized forwarding. Policy-based forwarding can be applied based on SSID or user-profile. That means a forwarding policy can be applied on a SSID or a specific user or a group of users

• AP grouping
 – Enables an admin to easily apply AP-based or radio-based configurations to all the AP that are in the same group.

• Staged Firmware upgrades
 – Enables an admin to selectively upgrade APs, typically a group of APs, to minimize the impact of upgrading large deployments of APs to a new version of firmware

• Custom antenna settings
 – Allow the admin to select a custom antenna gain
Quality of Service (QoS)

- **End-to-end QoS**
 - The HPE 850 Unified Wired-WLAN Appliance supports the DiffServ standard and IPv6 QoS; the QoS DiffServ model includes traffic classification and traffic policing, and fully implements six groups of services—EF, AF1 through AF4, and BE.

- **IEEE 802.1p prioritization**
 - Delivers data to devices based on the priority and type of traffic

- **Class of Service (CoS)**
 - Sets the IEEE 802.1p priority tag based on IP address, IP Type of Service (ToS), Layer 3 protocol, TCP/UDP port number, source port, and DiffServ

Security

- **Web-based authentication**
 - Provides a browser-based environment to authenticate clients that do not support the IEEE 802.1X supplicant

- **IEEE 802.1X and RADIUS network logins**
 - Supports port-based and SSID-based IEEE 802.1X authentication and accounting

- **WEP, WPA2, or WPA encryption**
 - Can be deployed at the AP to lock out unauthorized wireless access by authenticating users prior to granting network access; robust Advanced Encryption Standard (AES) or Temporal Key Integrity Protocol (TKIP) encryption secures the data integrity of wireless traffic

- **Integrated Wireless Intrusion Detection System (WIDS)**
 - Provides support for hybrid and dedicated modes; detects flood, spoofing, and weak IV attacks; displays statistics (events) and history; supports configuration of detection policies

- **Integrated Wireless Intrusion Prevention System (WIPS)**
 - Automatically identifies and classifies all APs and stations; enables packet-trigger containment via knowledge-based heuristics; protects against honeypot attacks and enforces STA security; detects Denial of Service (DoS) attacks via pre-defined DoS attacks, and provides a Signature mechanism which allows admins to define custom rules; enables Virtual Service Domains to deploy security policies by department or location for example.

- **Media access control (MAC) authentication**
 - Provides simple authentication based on a user’s MAC address; supports local or RADIUS-based authentication

- **Secure user isolation**
 - Virtual AP services enable network administrators to provide specific services for different user groups, allowing effective resource sharing, and simplifying network maintenance and management

- **Secure access by location**
 - AP location-based user access control helps ensure that wireless users can access and authenticate only to preselected APs, enabling system administrators to control the locations where a wireless user can access the network

- **Endpoint Admission Defense**
 - Integrated wired and wireless Endpoint Admission Defense (EAD) helps ensure that only wireless clients who comply with mandated enterprise security policies can access the network, reducing threat levels caused by infected wireless clients and improving the overall security of the wireless network
• Public Key Infrastructure (PKI)
 Is used to control access

• Authentication, authorization, and accounting (AAA)
 Uses an embedded authentication server or external AAA server for local users

• Wireless Intelligent Application Aware Feature (WIAA)
 – Provides a user role based or SSID based firewall embedded in WLAN Controller via ACL-based packet filter firewall and ASPF firewall
 – Protects clients from outside attacks Restrict specific users from accessing specific network resources

• Source Address Validation Improvement (SAVI)
 – Records the wireless client’s IP address and MAC address and at the next data traffic forwarding stage, SAVI will validate the client’s IP address to prevent attacker spoofing other client’s IP address

Connectivity

• Loopback
 Supports internal loopback testing for maintenance purposes and an increase in availability; loopback detection protects against incorrect cabling or network configurations and can be enabled on a per-port or per-VLAN basis for added flexibility

• IPv6
 – IPv6 host
 Enables controllers to be managed and deployed at the IPv6 network’s edge
 – Dual stack (IPv4 and IPv6)
 Transitions customers from IPv4 to IPv6, supporting connectivity for both protocols
 – MLD snoopin g
 Directs IPv6 multicast traffic to the appropriate interface, preventing traffic flooding
 – IPv6 ACL/QoS
 Supports ACL and QoS for IPv6 network traffic

• NAT support
 – NAT traversal
 Helps ensure that communication between a branch office AP and HPE 850 is supported when the branch uses NAT.
 – Integrated NAT support
 Replaces the private source IP address with a public address, enables multiple internal addresses to be mapped to the same public IP address; permits only certain internal IP addresses to be NATed, and provides an Application Layer Gateway that supports specific application protocols without requiring the NAT platform to be modified

• IEEE 802.3ad Link Aggregation Control Protocol (LACP)
 Supports a total of 4 trunk groups with each group supporting 8 active ports. Ports must be of the same type (that is, all 100/1000 ports or 10GbE ports)
Performance
- Flexible forwarding modes
 - Enable distributed and centralized traffic forwarding
 Centralized forwarding, wireless traffic is sent to the HPE 850 for processing. With distributed mode wireless traffic is dropped off locally. In the event that connectivity to the HPE 850 is lost, authenticated clients can continue to access local resources
 - Support local drop off or centralization of data traffic
 After an HTML authentication using the built-in portal server or IMC portal authentication.
- Wireless user access control and management
 - Support defining settings such as Committed Access Rate (CAS), QoS profiles, and access control policies based on location for different applications
- Fast roaming
 Supports Layer 3 roaming and fast roaming, satisfying the most demanding voice service requirements

Resiliency and high availability
- High reliability
 Supports 1+1, N+1, and N+N backup; the 1+1 redundancy configuration supports subsecond-level failure detection; APs establish AP-controller tunnel links with both controllers, but only the links to the active controller are active; when the active controller fails, the heartbeat mechanism between the two controllers helps ensure that the standby controller can sense the failure in subsecond level and then informs the APs to switch over to it, thus providing service continuity
- 802.1X hot-backup
 - Enables two controllers to sync 802.1X state information and wireless client's 802.11 information from master to backup. This feature is only supported on the HPE 850, HPE 870 and 20G Unified Module

Layer 2 switching
- VLAN support and tagging
 Supports IEEE 802.1Q with 4,094 simultaneous VLAN IDs
- Spanning Tree Protocol (STP)
 Supports standard IEEE 802.1D STP, IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for faster convergence, and IEEE 802.1s Multiple Spanning Tree Protocol (MSTP)
- Port mirroring
 Duplicates port traffic (ingress and egress) to a local or remote monitoring port
- Jumbo packet support
 Supports frame sizes up to 9K byte (switch) and up to 4K byte (controller) to improve the performance of large data transfers
Comprehensive portfolio
• Access point support

Refer to the HPE Access Point—Controller Compatibility Matrix

Scalability
• Optional 32 or 128 access-point upgrade license
 – Increases support for additional access points from the base 64 AP support without the need to buy additional costly hardware
 – A reduced-cost 128-access point license is available for use on the redundant controller. Refer to the Specifications and Accessories sections for more detail

Warranty and support
• Limited Lifetime Warranty

See hpe.com/networking/warrantysummary for warranty and support information included with your product purchase.

• Software releases
Includes all offered software releases for as long as you own the product; to find software for your product, refer to hpe.com/networking/support; for details on the software releases available with your product purchase, refer to hpe.com/networking/warrantysummary
HPE 850Unified Wired-WLAN Appliance Series

SPECIFICATIONS

I/O ports and slots
- 8 dual-personality ports; 8 RJ-45 autosensing 100/1000 ports (IEEE 802.3u Type 100BASE-TX, IEEE 802.3ab Type 1000BASE-T) Duplex: 100BASE-TX: half or full; 1000BASE-T: full only Media type: Auto-MDI X
- SFP 100/1000 Mb/s ports (IEEE 802.3z Type 1000BASE-X, IEEE 802.3u Type 100BASE-FX)
- 2 SFP+ 10GbE ports

Additional ports and slots
- 1 RJ-45 serial console port
- 1 RJ-45 out-of-band management port

Physical characteristics
- **Dimensions**: 17.32(w) x 16.54(d) x 1.72(h) in. (44 x 42 x 4.36 cm) (1U height)
- **Weight**: 12.35 lb (5.6 kg)

Power supplies
- 2 power supply slots
- 1 minimum power supply required includes: 1 x JG745A (HPE X351 150W 100-240VAC to 12VDC Power Supply)

Memory and processor
- Processor: Broadcom XLP432 Eight core @ 1.4 GHz, 4 GB flash, 4 GB DDR3 SDRAM

Mounting and enclosure
- EIA-standard 19-inch telco rack or equipment cabinet (hardware included)

Environment
- **Operating temperature**: 32°F to 113°F (0°C to 45°C)
- **Operating relative humidity**: 5% to 95%, noncondensing
- **Nonoperating/Storage temperature**: -40°F to 158°F (-40°C to 70°C)
- **Nonoperating/Storage relative humidity**: 5% to 95%, noncondensing
- **Altitude**: up to 16,404 ft (5 km)

Electrical characteristics
- **Maximum heat dissipation**: 546 BTU/hr (576.03 kJ/hr)
- **AC voltage**: 100–240 VAC
- **DC voltage**: -48 to -60 VDC
- **Maximum power rating**: 150 W
- **Frequency**: 50/60 Hz

Safety
- UL 60950-1, CAN/CSA 22.2 No. 60950-1; IEC 60950-1; EN 60950-1; FDA 21 CFR Subchapter J
SPECIFICATIONS

HPE 850 Unified Wired-WLAN Appliance (JG722A)

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default supported APs: 64</td>
</tr>
<tr>
<td>Maximum supported APs: 512 (via the optional purchase of the 32 or 128 access point E-LTU)</td>
</tr>
<tr>
<td>Maximum supported clients and centralized throughput: 10,000 clients</td>
</tr>
<tr>
<td>10G centralized throughput</td>
</tr>
<tr>
<td>Maximum supported users via local portal authentication: 2000</td>
</tr>
<tr>
<td>Maximum supported users via local authentication (AAA): 1,000</td>
</tr>
<tr>
<td>Maximum supported configured SSIDs: 512</td>
</tr>
<tr>
<td>Maximum supported ACLs: 32,000</td>
</tr>
<tr>
<td>Supported MSM APs are automatically discovered, Comware firmware is loaded, and the APs can be fully managed.</td>
</tr>
<tr>
<td>AP upgrade license rules for redundant HPE 850 Unified Wired-WLAN Appliance deployments</td>
</tr>
<tr>
<td>The primary HPE 850 Unified Wired-WLAN Appliance’s AP count must be increased using the optional HPE Unified Wired-WLAN 128 AP E-LTU (JG649AAE) or the HPE Unified Wired-WLAN 32 AP E-LTU (JG774AAE)</td>
</tr>
<tr>
<td>The secondary HPE 850 Unified Wired-WLAN Appliance’s AP count can be increased as needed using the reduced-cost HPE Unified Wired-WLAN 128 AP Redundant E-LTU</td>
</tr>
<tr>
<td>The AC Power supplies are hot-swappable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 55022 Class A; CISPR 22 Class A; ICES-003 Class A; AS/NZS CISPR 22 Class A; EN 61000-3-2; EN 61000-3-3; VCCI-3 CLASS A; VCCI-4 CLASS A; ETSI EN 300 386; FCC Part 15 (CFR 47) CLASS A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
</tr>
<tr>
<td>EN 55024, CISPR 24 & ETSI EN 300 386</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMC—Intelligent Management Center; command-line interface; Web browser; SNMP Manager; Telnet; HTTPS; RMON1; FTP; IEEE 802.3 Ethernet MIB; Ethernet Interface MIB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
</tr>
</tbody>
</table>
STANDARDS AND PROTOCOLS
(applies to all products in series)

<table>
<thead>
<tr>
<th>General protocols</th>
<th>IPv6</th>
<th>MiB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1AX-2008 Link Aggregation</td>
<td>RFC 1530 TFTP</td>
<td>RFC 1156 (TCP/IP MIB)</td>
</tr>
<tr>
<td>RFC 791 IP</td>
<td>RFC 1887 IPv6 Unicast Address Allocation Architecture</td>
<td>RFC 1213 (MIB-II)</td>
</tr>
<tr>
<td>RFC 792 ICMP</td>
<td>RFC 1981 IPv6 Path MTU Discovery</td>
<td>RFC 1229 Interface MIB Extensions</td>
</tr>
<tr>
<td>RFC 793 TCP</td>
<td>RFC 2292 Advanced Sockets API for IPv6</td>
<td>RFC 1643 Ethernet MIB</td>
</tr>
<tr>
<td>RFC 826 ARP</td>
<td>RFC 2373 IPv6 Addressing Architecture</td>
<td>RFC 1757 Remote Network Monitoring MIB</td>
</tr>
<tr>
<td>RFC 854 TELNET</td>
<td>RFC 2375 IPv6 Multicast Address Assignments</td>
<td>RFC 2011 SNMPv2 MIB for IP</td>
</tr>
<tr>
<td>RFC 855 Telnet Option Specification</td>
<td>RFC 2454 IP Version 6 Management Information Base - UDP</td>
<td>RFC 2012 SNMPv2 MIB for TCP</td>
</tr>
<tr>
<td>RFC 858 Telnet Suppress Go Ahead Option Procedure</td>
<td>RFC 2460 IPv6 Specification</td>
<td>RFC 2013 SNMPv2 MIB for UDP</td>
</tr>
<tr>
<td>RFC 894 IP over Ethernet</td>
<td>RFC 2461 IPv6 Neighbor Discovery</td>
<td>RFC 2571 SNMP Framework MIB</td>
</tr>
<tr>
<td>RFC 950 Internet Standard Subnetting Procedure</td>
<td>RFC 2462 IPv6 Stateless Address Auto-configuration</td>
<td>RFC 2572 SNMP-MPD MIB</td>
</tr>
<tr>
<td>RFC 959 File Transfer Protocol (FTP)</td>
<td>RFC 2573 IPv6 Multicast Address</td>
<td>RFC 2615 SMON MIB</td>
</tr>
<tr>
<td>RFC 1142 Incremental updating of the Internet checksum</td>
<td>RFC 2574 IPv6 Management Information Base for IPv6</td>
<td>RFC 2665 Ethernet-Like-MIB</td>
</tr>
</tbody>
</table>

RFCs for Protocols:

- **IEEE 802.1AX-2008 Link Aggregation**
- **RFC 768 UDP**
- **RFC 791 IP**
- **RFC 792 ICMP**
- **RFC 793 TCP**
- **RFC 826 ARP**
- **RFC 854 TELNET**
- **RFC 855 Telnet Option Specification**
- **RFC 858 Telnet Suppress Go Ahead Option Procedure**
- **RFC 894 IP over Ethernet**
- **RFC 950 Internet Standard Subnetting Procedure**
- **RFC 959 File Transfer Protocol (FTP)**

RFCs for MIBs:

- **RFC 1156 (TCP/IP MIB)**
- **RFC 1157 A Simple Network Management Protocol (SNMP)**
- **RFC 1213 (MIB-II)**
- **RFC 1229 Interface MIB Extensions**
- **RFC 1643 Ethernet MIB**
- **RFC 1757 Remote Network Monitoring MIB**
- **RFC 2011 SNMPv2 MIB for IP**

RFCs for IPv6:

- **RFC 2463 ICMPv6**
- **RFC 2464 Transmission of IPv6 over Ethernet Networks**
- **RFC 2465 Management Information Base for IPv6 Textual Conventions and General Group**
- **RFC 2466, Management Information Base for IPv Version 6 - ICMPv6**
- **RFC 2526 Reserved IPv6 Subnet Anycast Addresses**
- **RFC 2553 Basic Socket Interface Extensions for IPv6**
- **RFC 2563 ICMPv6**
- **RFC 2925 Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations (Ping only)**
- **RFC 3375 DHCPv6 (client and relay)**
- **RFC 3363 DNS support**

RFCs for IP multicast:

- **RFC 2934 Protocol Independent Multicast MIB for IPv4**
- **RFC 4541 Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches**

RFCs for MIBs:

- **RFC 2131 DHCP**
- **RFC 2246 The TLS Protocol Version 1.0**
- **RFC 2284 EAP over LAN**
- **RFC 2616 HTTP Compatibility v1.1**
- **RFC 2644 Directed Broadcast Control**
- **RFC 2864 The Inverted Stack Table Extension to the Interfaces Group MIB**
- **RFC 2866 RADIUS Accounting**
- **RFC 2869 RADIUS Extensions**
- **RFC 3164 Syslog**
- **RFC 3484 Default Address Selection for IPv6**
- **RFC 3493 Basic Socket Interface Extensions for IPv6**
- **RFC 3513 IPv6 Addressing Architecture**
- **RFC 3542 Advanced Sockets API for IPv6**
- **RFC 3587 IPv6 Global Unicast Address Format**
- **RFC 3596 DNS Extension for IPv6**
- **RFC 4793, Unique Local IPv6 Unicast Addresses**
- **RFC 4443 ICMPv6**
- **RFC 4541 IGMP & MLD Snooping Switch**
- **RFC 4861 IPv6 Neighbor Discovery**
- **RFC 4862 IPv6 Stateless Address Auto-configuration**
- **RFC 5095 Deprecation of Type 0 Routing Headers in IPv6**

RFCs for IPv6:

- **RFC 2571 SNMP Framework MIB**
- **RFC 2572 SNMP-MPD MIB**
- **RFC 2573 IPv6 Multicast Address Assignments**
- **RFC 2574 IPv6 Management Information Base for IPv6 Textual Conventions and General Group**
- **RFC 2575 Basic Socket Interface Extensions for IPv6**
- **RFC 2613 SMON MIB**
- **RFC 2665 Ethernet-Like-MIB**
- **RFC 2674 Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering, and Virtual Extensio**
- **RFC 2819 RMON MIB**
- **RFC 2863 The Interfaces Group MIB**
- **RFC 2932 IP (Multicast Routing MIB)**
- **RFC 3020 IPv6 MIB**
- **RFC 3444 Management Information Base for Intermediate System to Intermediate System (IS-IS)**

RFCs for MIBs:

- **RFC 2012 SNMPv2 MIB for TCP**
- **RFC 2013 SNMPv2 MIB for UDP**
- **RFC 2571 SNMP Framework MIB**
- **RFC 2572 SNMP-MPD MIB**
- **RFC 2613 SMON MIB**
- **RFC 2665 Ethernet-Like-MIB**
- **RFC 2674 Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering, and Virtual Extensio**
- **RFC 2819 RMON MIB**
- **RFC 2863 The Interfaces Group MIB**
- **RFC 2932 IP (Multicast Routing MIB)**
- **RFC 3444 Management Information Base for Intermediate System to Intermediate System (IS-IS)**
STANDARDS AND PROTOCOLS
(applies to all products in series)

Mobility
- IEEE 802.11a High Speed Physical Layer in the 5 GHz Band
- IEEE 802.11ac WLAN Enhancements for Very High Throughput
- IEEE 802.11b Higher-Speed Physical Layer Extension in the 2.4 GHz Band
- IEEE 802.11d Global Harmonization
- IEEE 802.11e QoS enhancements
- IEEE 802.11f Further Higher Data Rate Extension in the 2.4 GHz Band
- IEEE 802.11h Dynamic Frequency Selection
- IEEE 802.11i Medium Access Control (MAC) Security Enhancements
- IEEE 802.11n WLAN Enhancements for Higher Throughput

Network management
- IEEE 802.11k-2008 (beacon measurement functionality used as part of radio resource management)
- RFC 1155 Structure of Management Information
- RFC 1905 SNMPv2 Protocol Operations
- RFC 2573 SNMPv3 Applications
- RFC 2574 SNMPv3 User-based Security Model (USM)
- RFC 2575 VACM for SNMP

QoS/CoS
- RFC 2474 DS Field in the IPv4 and IPv6 Headers
- RFC 2475 DiffServ Architecture
- RFC 3168 The Addition of Explicit Congestion Notification (ECN) to IP

Security
- IEEE 802.11w Protected Management Frames
- IEEE 802.1x Port Based Network Access Control
- PEAP-GTC
- PEAP-MSCHAPv2
- RFC 1851 ESP Triple DES Transform
- RFC 2246 Transport Layer Security (TLS)
- RFC 2401 Security Architecture for the Internet Protocol
- RFC 2408 Internet Security Association and Key Management Protocol (ISAKMP)
- RFC 2409 The Internet Key Exchange (IKE)
- RFC 2548 Microsoft Vendor-specific RADIUS Attributes
- RFC 2716 PPP EAP TLS Authentication Protocol
- RFC 2865 RADIUS Authentication
- RFC 2867 RADIUS Accounting Modifications for Tunnel Protocol Support
- RFC 3394 Advanced Encryption Standard (AES) Key Wrap Algorithm
- RFC 3576 Dynamic Authorization Extensions to RADIUS (Disconnect Message and Session-time renewal)
- RFC 3579 RADIUS Support For Extensible Authentication Protocol (EAP)

VPN
- RFC 2403 The Use of HMAC-MDS-96 within ESP and AH
- RFC 2404 The Use of HMAC-SHA-1-96 within ESP and AH
- RFC 2405 The Use of HMAC-SHA-2-256 within ESP and AH

IPSec
- RFC 1829 The ESP DES-CBC Transform
- RFC 3602 The AES-CBC Cipher Algorithm and its Use with IPSec

IKEv1
- RFC 3748 - Extensible Authentication Protocol (EAP)

PKI
- RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
HPE 850 Unified Wired-WLAN Appliance Series accessories

HPE 850 Unified Wired-WLAN Appliance (JG722A)
- HPE X125 1G SFP LC LH40 1310nm Transceiver (JD061A)
- HPE X120 1G SFP LC LH40 1550nm Transceiver (JD062A)
- HPE X125 1G SFP LC LH70 Transceiver (JD063B)
- HPE X110 100M SFP LC LH40 Transceiver (JD090A)
- HPE X130 10G SFP+ LC SR Transceiver (JD092B)
- HPE X130 10G SFP+ LC LR Transceiver (JD093B)
- HPE X130 10G SFP+ LC LRM Transceiver (JD094B)
- HPE X240 10G SFP+ to SFP+ 0.65m Direct Attach Copper Cable (JD095C)
- HPE X240 10G SFP+ to SFP+ 1.2m Direct Attach Copper Cable (JD096C)
- HPE X240 10G SFP+ to SFP+ 3m Direct Attach Copper Cable (JD097C)
- HPE X110 100M SFP LC FX Transceiver (JD102B)
- HPE X120 1G SFP LC SX Transceiver (JD118B)
- HPE X120 1G SFP LC LX Transceiver (JD119B)
- HPE X110 100M SFP LC LX Transceiver (JD120B)
- HPE X130 10G SFP+ LC ER 40km Transceiver (JG234A)
- HPE X351 150W 100-240VAC to 12VDC Power Supply (JG745A)
- HPE X351 150W -48/-60VDC to 12VDC Power Supply (JG746A)
- HPE Unified Wired-WLAN 32 AP E-LTU (JG774AAE)
- HPE Unified Wired-WLAN 128 AP E-LTU (JG649AAE)
- HPE Unified Wired-WLAN 128 AP Redundant E-LTU (JG902AAE)

Learn more at hpe.com/networking

© Copyright 2014–2015 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft is a trademark of the Microsoft group of companies. Bluetooth is a trademark owned by its proprietor and used by Hewlett-Packard Company under license. sFlow is a registered trademark of InMon Corp.

4AA5-2606ENW, November 2015, Rev. 5